Product description

- Ideal for round shaped and flat ceiling and pendant luminaires
- THE solution to realise XXL luminaires
- For uniform illumination of prestige areas or rooms designed to impress
- High Output and High Efficiency Mode enables more flexibility on luminaire design
- Narrow diffuser distances possible
- Self cooling (no additional heat sink required)
- Long life-time: 50,000 hours
- 5-year guarantee

Optical properties

- Colour temperatures 3,000 and 4,000 K
- Typ. luminous flux 1,000, 1,200 und 2,500 lm
- Efficacy of the module up to 203 lm/W
- High colour rendering index CRI > 80
- Small colour tolerance MacAdam 3°
- Small luminous flux tolerances

Mechanical properties

- Module dimension ø522 mm, ø802 mm und ø1,082 mm with several module segments
- Simple installation (e.g. screws)

System solution

- Perfect system solution with PREMIUM lp drivers

Standards, page 3
Colour temperatures and tolerances, page 8
Module CLE Quadrant G3 ADV
Modules CLE advanced

Technical data

Beam characteristic: 120°
Ambient temperature range: -25 ... +45 °C
tp rated: 45 °C
tc: 85 °C
Irated for CLE Quadrant G3 261mm: 225 mA
Irated for CLE Quadrant G3 401mm: 450 mA
Irated for CLE Quadrant G3 541mm: 250 mA
Imax for CLE Quadrant G3 261mm: 1,200 mA
Imax for CLE Quadrant G3 401mm: 2,800 mA
Imax for CLE Quadrant G3 541mm: 1,400 mA
Max. permissible LF current ripple for CLE Quadrant G3 261mm: 1,320 mA
Max. permissible LF current ripple for CLE Quadrant G3 401mm: 3,080 mA
Max. permissible LF current ripple for CLE Quadrant G3 541mm: 1,540 mA
Max. permissible peak current for CLE Quadrant G3 261mm: 1,680 mA / max. 10 ms
Max. permissible peak current for CLE Quadrant G3 401mm: 3,840 mA / max. 10 ms
Max. permissible peak current for CLE Quadrant G3 541mm: 1,920 mA / max. 10 ms
Max. working voltage for insulation: 300 V
Insulation test voltage: 1.6 kV
CTI of the printed circuit board: ≥ 600
ESD classification severity level: 4
Risk group (EN 62471:2008): RG1
Classification acc. to IEC 62031: Built-in
Type of protection: IP00

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Colour temperature</th>
<th>Packaging carton</th>
<th>Weight per pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLE Quadrant G3 261mm 1200lm 830 ADV</td>
<td>89603016</td>
<td>3.000 K</td>
<td>80 pcs(s)</td>
<td>0.170 kg</td>
</tr>
<tr>
<td>CLE Quadrant G3 261mm 1200lm 840 ADV</td>
<td>89603017</td>
<td>4.000 K</td>
<td>80 pcs(s)</td>
<td>0.170 kg</td>
</tr>
<tr>
<td>CLE Quadrant G3 401mm 2500lm 830 ADV</td>
<td>89603018</td>
<td>3.000 K</td>
<td>20 pcs(s)</td>
<td>0.400 kg</td>
</tr>
<tr>
<td>CLE Quadrant G3 401mm 2500lm 840 ADV</td>
<td>89603019</td>
<td>4.000 K</td>
<td>20 pcs(s)</td>
<td>0.400 kg</td>
</tr>
<tr>
<td>CLE Quadrant G3 541mm 1000lm 830 ADV</td>
<td>89603020</td>
<td>3.000 K</td>
<td>40 pcs(s)</td>
<td>0.146 kg</td>
</tr>
<tr>
<td>CLE Quadrant G3 541mm 1000lm 840 ADV</td>
<td>89603021</td>
<td>4.000 K</td>
<td>40 pcs(s)</td>
<td>0.146 kg</td>
</tr>
</tbody>
</table>
Specific technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>Photo-metric code</th>
<th>Typ. luminous flux at tp = 25 °C</th>
<th>Typ. luminous flux at tp = 45 °C</th>
<th>Typ. forward current</th>
<th>Min. forward voltage at tp = 25 °C</th>
<th>Max. forward voltage at tp = 45 °C</th>
<th>Typ. power consumption at tp = 25 °C</th>
<th>Efficacy of the module at tp = 25 °C</th>
<th>Efficacy of the system at tp = 45 °C</th>
<th>Colour rendering index CRI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Operating mode HE</td>
<td></td>
</tr>
<tr>
<td>CLE Quadrant G3 261mm 1200lm 830 ADV</td>
<td>830/359</td>
<td>1,280 lm</td>
<td>1,250 lm</td>
<td>225 mA</td>
<td>28.9 V</td>
<td>31.4 V</td>
<td>6.7 W</td>
<td>790 lm/W</td>
<td>188 lm/W</td>
<td>169 lm/W > 80</td>
</tr>
<tr>
<td>CLE Quadrant G3 261mm 1200lm 840 ADV</td>
<td>840/359</td>
<td>1,350 lm</td>
<td>1,320 lm</td>
<td>225 mA</td>
<td>28.9 V</td>
<td>31.4 V</td>
<td>6.7 W</td>
<td>200 lm/W</td>
<td>198 lm/W</td>
<td>178 lm/W > 80</td>
</tr>
<tr>
<td>CLE Quadrant G3 401mm 2500lm 830 ADV</td>
<td>830/359</td>
<td>2,580 lm</td>
<td>2,520 lm</td>
<td>450 mA</td>
<td>28.6 V</td>
<td>31.2 V</td>
<td>13.2 W</td>
<td>192 lm/W</td>
<td>190 lm/W</td>
<td>171 lm/W > 80</td>
</tr>
<tr>
<td>CLE Quadrant G3 401mm 2500lm 840 ADV</td>
<td>840/359</td>
<td>2,720 lm</td>
<td>2,660 lm</td>
<td>450 mA</td>
<td>28.6 V</td>
<td>31.2 V</td>
<td>13.2 W</td>
<td>203 lm/W</td>
<td>201 lm/W</td>
<td>181 lm/W > 80</td>
</tr>
<tr>
<td>CLE Quadrant G3 541mm 1000lm 830 ADV</td>
<td>830/359</td>
<td>1,040 lm</td>
<td>1,070 lm</td>
<td>250 mA</td>
<td>210 V</td>
<td>22.8 V</td>
<td>5.4 W</td>
<td>191 lm/W</td>
<td>188 lm/W</td>
<td>169 lm/W > 80</td>
</tr>
<tr>
<td>CLE Quadrant G3 541mm 1000lm 840 ADV</td>
<td>840/359</td>
<td>1,090 lm</td>
<td>1,070 lm</td>
<td>250 mA</td>
<td>210 V</td>
<td>22.8 V</td>
<td>5.4 W</td>
<td>200 lm/W</td>
<td>199 lm/W</td>
<td>179 lm/W > 80</td>
</tr>
</tbody>
</table>

| Operating mode HO |
CLE Quadrant G3 261mm 1200lm 830 ADV	830/359	1,930 lm	1,890 lm	350 mA	29.7 V	32.3 V	10.7 W	178 lm/W	177 lm/W	159 lm/W > 80
CLE Quadrant G3 261mm 1200lm 840 ADV	840/359	2,040 lm	1,990 lm	350 mA	29.7 V	32.3 V	10.7 W	189 lm/W	186 lm/W	167 lm/W > 80
CLE Quadrant G3 401mm 2500lm 830 ADV	830/359	4,030 lm	3,930 lm	725 mA	29.5 V	32.1 V	22.0 W	181 lm/W	179 lm/W	161 lm/W > 80
CLE Quadrant G3 401mm 2500lm 840 ADV	840/359	4,250 lm	4,150 lm	725 mA	29.5 V	32.1 V	22.0 W	191 lm/W	189 lm/W	170 lm/W > 80
CLE Quadrant G3 541mm 1000lm 830 ADV	830/359	1,510 lm	1,480 lm	375 mA	215 V	23.4 V	8.5 W	180 lm/W	179 lm/W	161 lm/W > 80
CLE Quadrant G3 541mm 1000lm 840 ADV	840/359	1,600 lm	1,560 lm	375 mA	215 V	23.4 V	8.5 W	191 lm/W	188 lm/W	169 lm/W > 80

1. Integral measurement over the complete module.
2. If mounted with M4 screws.
3. Measured at operating mode HO.
4. Tolerance range for optical and electrical data: ±10 %
5. HE ... high efficiency, HO ... high output.
1. Standards

IEC 62031
IEC 62471
IEC 62778
IEC 61547
IEC 61000-4-2

Subject to change without notice. Information provided without guarantee.

1.1 Photometric code

Key for photometric code, e.g. 830 / 449

<table>
<thead>
<tr>
<th>Code</th>
<th>CRI</th>
<th>Colour temperature in Kelvin × 100</th>
<th>MacAdam initial</th>
<th>MacAdam after 25% of the life-time (max.6000h)</th>
<th>Luminous flux after 25% of the life-time (max.6000h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>70 – 79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>80 – 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Energy classification

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLE Quadrant G3 ADV</td>
<td>A++</td>
</tr>
</tbody>
</table>

2. Thermal details

2.1 tc point, ambient temperature and life-time

The temperature at tp reference point is crucial for the light output and life-time of a LED product.

For CLE a tp temperature of 45 °C has to be complied in order to achieve an optimum between heat sink requirements, light output and life-time.

Compliance with the maximum permissible reference temperature at the tc point must be checked under operating conditions in a thermally stable state. The maximum value must be determined under worst-case conditions for the relevant application.

The tc and tp temperature of LED modules from Tridonic are measured at the same reference point.

2.2 Storage and humidity

Storage temperature: -30...+80 °C

Operation only in non-condensing environment.

Humidity during processing of the module should be between 30 to 70 %.

2.3 Thermal design and heat sink

The rated life of LED products depends to a large extent on the temperature. If the permissible temperature limits are exceeded, the life of the CLE will be greatly reduced or the CLE may be destroyed.

3. Installation / wiring

3.1 Electrical supply/choice of LED Driver

CLE from Tridonic are not protected against overvoltages, overcurrents, overloads or short-circuit currents. Safe and reliable operation can only be guaranteed in conjunction with a LED Driver which complies with the relevant standards. The use of LED Driver from Tridonic in combination with CLE guarantees the necessary protection for safe and reliable operation.

If a LED Driver other than Tridonic is used, it must provide the following protection:
- Short-circuit protection
- Overload protection
- Overtemperature protection

CLE must be supplied by a constant current LED Driver. Operation with a constant voltage LED Driver will lead to an irreversible damage of the module.

Wrong polarity can damage the CLE.

With parallel wiring tolerance-related differences in output are possible (thermal stress of the module) and can cause differences in brightness. If one module fails, the remaining modules may be overloaded.

CLE can be operated either from SELV LED Drivers or from LED Drivers with LV output voltage.

CLE are basic insulated up to 300 V against ground and can be mounted directly on earthed metal parts of the luminaire. If the max. output voltage of the led Driver (also against earth) is above 300 V, an additional insulation between LED module and heat sink is required (for example by insulated thermal pads) or by a suitable luminaire construction.

At voltages > 60 V an additional protection against direct touch (test finger) to the light emitting side of the module has to be guaranteed. This is typically achieved by means of a non removable light distributor over the module.

3.2 Wiring

CLE Quadrant G3 261mm 1200 lm ADV

CLE Quadrant G3 401mm 2500 lm ADV

Data sheet 02/20-LED427-3
Subject to change without notice. Information provided without guarantee.
3.3 Wiring type and cross section

The wiring can be in solid with a cross section of 0.14 to 0.5 mm². No reconnection with smaller diameters possible if used with >0.34 mm².

To remove the wires use a suitable tool (Wago 206-859) or through twist and pull.

3.4 Mounting instruction

None of the components of the CLE (substrate, LED, electronic components etc.) may be exposed to tensile or compressive stresses.

Max. torque for fixing: 0.5 Nm.

The LED modules are mounted with 4 screws per module. In order not to damage the modules only rounded head screws and an additional plastic flat washer should be used.

Chemical substance may harm the LED module. Chemical reactions could lead to colour shift, reduced luminous flux or a total failure of the module caused by corrosion of electrical connections.

Materials which are used in LED applications (e.g. sealings, adhesives) must not produce dissolver gas. They must not be condensation curing based, acetate curing based or contain sulfur, chlorine or phthalate.

Avoid corrosive atmosphere during usage and storage.
3.5 EOS/ESD safety guidelines

The device / module contains components that are sensitive to electrostatic discharge and may only be installed in the factory and on site if appropriate EOS/ESD protection measures have been taken. No special measures need be taken for devices/modules with enclosed casings (contact with the pc board not possible), just normal installation practice. Please note the requirements set out in the document EOS / ESD guidelines (Guideline_EOS_ESD.pdf) at: http://www.tridonic.com/esd-protection

4. Life-time

4.1 Life-time, lumen maintenance and failure rate

The light output of an LED Module decreases over the life-time, this is characterized with the L value.

L70 means that the LED module will give 70% of its initial luminous flux. This value is always related to the number of operation hours and therefore defines the life-time of an LED module.

As the L value is a statistical value and the lumen maintenance may vary over the delivered LED modules.

The B value defines the amount of modules which are below the specific L value, e.g. L70B10 means 10% of the LED modules are below 70% of the initial luminous flux, respectively 90% will be above 70% of the initial value. In addition the percentage of failed modules (fatal failure) is characterized by the C value.

The F value is the combination of the B and C value. That means for F degradation and complete failures are considered, e.g. L70F10 means 10% of the LED modules may fail or be below 70% of the initial luminous flux.
5. Electrical values

5.1 Typ. forward voltage vs. forward current

The diagrams are based on statistic values.
The real values can be different.
6. Photometric characteristics

6.1 Coordinates and tolerances according to CIE 1931

The specified colour coordinates are measured integral after a settling time of 100 ms. The current impulse depends on the module type. The ambient temperature of the measurement is ta = 25 °C. The measurement tolerance of the colour coordinates are ± 0.01.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Current impulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLE Quadrant G3 261mm 1200lm 8x0 ADV</td>
<td>225 mA</td>
</tr>
<tr>
<td>CLE Quadrant G3 401mm 1200lm 8x0 ADV</td>
<td>450 mA</td>
</tr>
<tr>
<td>CLE Quadrant G3 541mm 1200lm 8x0 ADV</td>
<td>250 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3,000 K x0 y0 Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4338 0.4030</td>
</tr>
</tbody>
</table>

MacAdam Ellipse: 3SDCM

<table>
<thead>
<tr>
<th>4,000 K x0 y0 Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3818 0.3797</td>
</tr>
</tbody>
</table>

MacAdam Ellipse: 3SDCM
6.2 Light distribution

The optical design of the STARK QLE product line ensures optimum homogeneity for the light distribution.

⚠️ The colour temperature is measured over the complete module. The single LED light points can be outside of 3SDCM.
To ensure an ideal mixture of colours and a homogeneous light distribution a suitable optic (e.g. PMMA diffuser) and a sufficient spacing between module and optic (typ. 7 cm) should be used.

6.3 Relative luminous flux vs. tc temperature

6.4 Relative luminous flux vs. operating current

7. Miscellaneous

7.1 Additional information

Additional technical information at www.tridonic.com → Technical Data
Guarantee conditions at www.tridonic.com → Services

Life-time declarations are informative and represent no warranty claim.