EM powerLED SELFTEST NM LiFePO4 4 W
Combined emergency lighting LED driver 1 – 4 W

Product description
• Emergency lighting LED driver with self-test function
• For self-contained emergency lighting
• SELV for output voltage < 60 V DC
• Low profile casing (21 x 30 mm cross-section)
• 5 years guarantee (conditions at www.tridonic.com)

Properties
• Non-maintained operation
• Self-test as per IEC 62034
• Constant current mode
• With either screw or clip fastening (clip-fix)
• 1, 2 or 3 h rated duration
• Selectable operating time (jumper)
• Two-colour status display LED
• „Rest mode“ function
• SELV (outputs powerLED, battery, status LED, test switch)
• Very low energy consumption from the battery after activation of the deep discharge protection

Battery management
• Intelligent charge system
• Deep discharge protection
• Temperature protection
• Polarity reversal protection

Batteries
• LiFePO4 batteries with Tridonic LiFeGuard
• Overcharge-/Overdischarge protection
• Ensures safety in use
• Up to 8 year design life
• 4 year guarantee

Standards, page 5
Wiring diagrams and installation examples, page 6
EM powerLED SELFTEST NM LiFePO4 4 W
Combined emergency lighting LED driver 1 – 4 W

Technical data
Rated supply voltage 220 – 240 V
AC voltage range 198 – 264 V
Mains frequency 50 / 60 Hz
Overvoltage protection 320 V (for 48 h)
THD (at 230 V, 50 Hz, full load) < 120 %
U-OUT (including open- / short-circuit and double load) 15 V
Max. open circuit voltage 15 V
Output current tolerance ± 10 %
Typ. output LF current ripple at full load ± 5 %
Starting time (at 230 V, 50 Hz, full load) < 0.7 s
Output current see chapter 5.3
Ambient temperature range ta -25 ... +55 °C
Max. casing temperature tc 75 °C
Mains voltage changeover threshold according to EN 60598-2-22
Mains surge capability (between L – N) 1 kV
Surge voltage at output side (against PE) < 2 kV
Mains surge capability (between L/N – PE) 2 kV
Type of protection IP20
Lifetime up to 100,000 h
Guarantee 5 years

Specific technical data
Type EM
Rated duration Number of LEDs Typ. λ (at 230 V, 50 Hz) Forward voltage LED module\(^{a}\) Non-maintained operation

<table>
<thead>
<tr>
<th>EM pLED ST NM 204 LiFePO4 4 W</th>
<th>1 h</th>
<th>1</th>
<th>0.53C</th>
<th>2.6 – 3.4 V</th>
<th>20/11 mA</th>
<th>2.2/0.9 W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 h</td>
<td>2</td>
<td>0.53C</td>
<td>5.2 – 6.8 V</td>
<td>22/11 mA</td>
<td>2.6/0.9 W</td>
</tr>
<tr>
<td></td>
<td>3 h</td>
<td>2</td>
<td>0.53C</td>
<td>5.2 – 6.8 V</td>
<td>26/11 mA</td>
<td>3.2/0.9 W</td>
</tr>
</tbody>
</table>

\(^{a}\) EM = Emergency
\(^{b}\) For LiFePO4 batteries voltage dependent constant current charging is used. The values displayed are for charging on / charging off
\(^{c}\) When exceeding the rated power of 4 W the LED current is reduced proportionally.

\(^{d}\) Tolerance range for electrical data ±10 %
Test switch EM2

Product description
- For connection to the emergency lighting unit
- For checking the device function

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test switch EM 2</td>
<td>89805277</td>
<td>25 pc(s)</td>
<td>600 pc(s)</td>
<td>0.011 kg</td>
</tr>
</tbody>
</table>

Status indication bi-colour LED

Product description
- Two-colour status display LED
- Green: system OK, red: fault

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED EM bi-colour</td>
<td>89899720</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.017 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, high brightness</td>
<td>89899753</td>
<td>25 pc(s)</td>
<td>800 pc(s)</td>
<td>0.015 kg</td>
</tr>
</tbody>
</table>
Product description
- Extension cable for LiFePO₄ batteries
- Cable length 500 mm
- 3-pole plug connection

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging per pc.</th>
<th>Weight per pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTENSION CABLE LiFePO₄ 500mm</td>
<td>28002461</td>
<td>10 pcs</td>
<td>0.01 kg</td>
</tr>
</tbody>
</table>
1. Standards

- EN 61347-2-7
- EN 61347-2-13
- EN 62384
- EN 55015
- EN 61000-3-2
- EN 61547
- EN 60068-2-29
- EN 60068-2-30
- EN 60068-2-64
- according to EN 50172
- according to EN 60598-2-22
- according to EN 62034

Meaning of marking:
Double or reinforced insulation for built-in electronic LED drivers.

1.1 Glow-wire test

according to EN 61347-1 with increased temperature of 850 °C passed.

1.2 Insulation and electric strength testing of luminaires

Electronic LED drivers can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 VDC for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal. The insulation resistance must be at least 2 MΩ.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1,500 VAC (or 1,414 x 1,500 VDC). To avoid damage to the electronic devices this test must not be conducted.

2. Thermal details and lifetime

2.1 Lifetime

Average lifetime 100,000 hours under rated conditions with a failure rate of less than 10 %. Average failure rate of 0.2 % per 1000 operating hours.

The emergency lighting LED driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than 10 %.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

<table>
<thead>
<tr>
<th>EM pLED ST NM LifePO4</th>
<th>60 °C</th>
<th>65 °C</th>
<th>70 °C</th>
<th>75 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>lifetime</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>76,000 h</td>
</tr>
</tbody>
</table>

Data sheet 06/22-EM133-1
Subject to change without notice. Information provided without guarantee. www.tridonic.com

5
3. Installation / Wiring

3.1 Wiring diagram

3.1.1 Wiring with one or multiple LED modules

Serial:

Take care that the LED is connected with the right polarity. LED that are connected to the EM powerLED devices should have a reverse polarity protection device such as a schottky diodes fitted, otherwise irreversible damage could occur if the LED is connected in reverse polarity. Any protection device must be capable of handling in excess of 1,000 mA.
3.2 Wiring type and cross section

LED module/LED driver/supply:
Use solid/stranded wire with a cross section of 0.5 – 1.5 mm² for wiring. Strip 8.5 – 9.5 mm of insulation from the cables to ensure perfect operation of terminals.

wire preparation:
0.5 – 1.5 mm²
8.5 – 9.5 mm

Status indication LED / Test switch:
Use solid wire with a cross section of 0.2 – 0.5 mm² for wiring. Strip 8.5 – 9.5 mm of insulation from the cables to ensure perfect operation of terminals.

wire preparation:
0.2 – 0.5 mm²
8.5 – 9.5 mm

3.3 Battery connection

LiFePO₄: Direct connection

LiFePO₄: Connection with extension

3.4 Loose wiring

Press down the “push button” and remove the cable from front.

3.5 Wiring guidelines

- The LED terminals, battery, indicator LED and test switch terminals are classified as SELV (output voltage < 60 V DC). Keep the wiring of the input terminals separated from the wiring of the SELV classified terminals or consider special wiring (double insulation, 6 mm creepage and clearance) when these connections should be kept SELV.
- The output to the LED is DC but has high frequency content, which should be considered for good EMC compliance.
- LED leads should be separated from the mains connections and wiring for good EMC performance.
- Maximum lead length on the LED terminals is 3 m. For a good EMC performance keep the LED wiring as short as possible.
- The secondary wires (LED module) should be routed in parallel to ensure good EMC performance.
- Maximum lead length for the Test switch and Indicator LED connection is 1 m. The test switch and Indicator LED wiring should be separated from the LED leads to prevent noise coupling.
- Battery leads are specified with 0.5 mm cross section and a length of 0.8 m.
- To avoid the damage of the control gear, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.)

To ensure that a luminaire containing LED emergency units complies with EN 55015 for radio frequency conducted interference in both normal and emergency mode it is essential to follow good practice in the wiring layout.

3.6 Maximum lead length

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum Lead Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED (6 m loop)</td>
<td>3 m</td>
</tr>
<tr>
<td>Test switch</td>
<td>1 m</td>
</tr>
<tr>
<td>Status indication LED</td>
<td>1 m</td>
</tr>
<tr>
<td>Batteries</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

Note: Do not exceed the length of LED leads to the LED module. Leads should always be kept as short as possible.

3.7 Use of different phases

The use of different phases for switched line and unswitched line is allowed. When using different phases, the unswitched line must fail if the switched line fails. This is required to assure correct switching into emergency mode. It can be realised with a relay.

4. Mechanical values

4.1 Housing properties

- Casing manufactured from polycarbonate.
- Type of protection: IP20

Recommended fixing details for clip fixing

Max. torque for mounting screws: 0.8 Nm
4.2 Mechanical data accessories

LED bi-colour status indicator
- Green / Red
- Mounting hole 6.5 mm diameter, 1 – 1.6 mm thickness
- Lead length 1.0 m
- Insulation rating: 90 °C

Test switch
- Mounting hole 7.0 mm diameter
- Lead length 0.55 m

Battery connection
- Plug connection 0.3 m
- Extension 0.5 m

5. Electrical values

5.1 Maximum loading of automatic circuit breakers

<table>
<thead>
<tr>
<th>Automatic circuit breaker type</th>
<th>B10</th>
<th>B13</th>
<th>B16</th>
<th>B20</th>
<th>C10</th>
<th>C13</th>
<th>C16</th>
<th>C20</th>
<th>t_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Ø</td>
<td>15 mm²</td>
<td>15 mm²</td>
<td>2.5 mm²</td>
<td>2.5 mm²</td>
<td>15 mm²</td>
<td>15 mm²</td>
<td>2.5 mm²</td>
<td>2.5 mm²</td>
<td>6 A</td>
</tr>
<tr>
<td>EM pLED ST NM LiFePO4</td>
<td>90</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>180</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>55 μs</td>
</tr>
</tbody>
</table>

5.2 Insulation matrix

<table>
<thead>
<tr>
<th></th>
<th>Mains</th>
<th>Switched Live</th>
<th>Battery, Test switch, Indicator LED</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains</td>
<td>-</td>
<td>-</td>
<td>•</td>
<td>-</td>
</tr>
<tr>
<td>Switched Live</td>
<td>•</td>
<td>-</td>
<td>•</td>
<td>-</td>
</tr>
<tr>
<td>Battery, Test switch, Indicator LED</td>
<td>• •</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rest</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>-</td>
</tr>
</tbody>
</table>

* Represents basic insulation
• • Represents double or reinforced insulation

5.3 LED current

EM pLED ST NM LiFePO4, 1 / 2 / 3 h

<table>
<thead>
<tr>
<th>Type</th>
<th>EM pLED ST NM LiFePO4 4W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>89800801, 89800802</td>
</tr>
<tr>
<td>LED current in emergency operation</td>
<td>1 x LED 1,000 mA</td>
</tr>
<tr>
<td></td>
<td>2 x LED 700 mA</td>
</tr>
</tbody>
</table>
6. Electrical values

6.1 Duration link selection

<table>
<thead>
<tr>
<th>Duration</th>
<th>Link Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hr</td>
<td>without jumper</td>
</tr>
<tr>
<td>2 hr</td>
<td>position A</td>
</tr>
<tr>
<td>3 hr</td>
<td>position B</td>
</tr>
</tbody>
</table>

6.2 Jumper selection

Module supplied with jumper in 3 hours position (position B).

The position of the link will only be read on first power up. If it is changed afterwards both the battery and mains supply must be disconnected for 10 seconds to enable the EM powerLED to read the new link position on reconnection of the battery and mains. It will lead to a false battery failure indication if the link is changed after installation without this reset.

6.3 Status indication

System status is indicated by a bi-colour LED.

<table>
<thead>
<tr>
<th>LED indication</th>
<th>Status</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent green</td>
<td>System OK</td>
<td>AC mode</td>
</tr>
<tr>
<td>Fast flashing green</td>
<td>Function test</td>
<td></td>
</tr>
<tr>
<td>(0.1 s on – 0.1 s off)</td>
<td>duration test</td>
<td>underway</td>
</tr>
<tr>
<td>Slow flashing green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 s on – 1 s off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red LED on</td>
<td>Load failure</td>
<td>Open circuit / Short circuit / LED failure</td>
</tr>
<tr>
<td>Slow flashing red</td>
<td>Battery failure</td>
<td>Battery failed the duration test or function</td>
</tr>
<tr>
<td>(1 s on – 1 s off)</td>
<td></td>
<td>/ Battery is defect / Incorrect battery voltage</td>
</tr>
<tr>
<td>Fast flashing red</td>
<td>Charging failure</td>
<td>Incorrect charging current</td>
</tr>
<tr>
<td>(0.1 s on – 0.1 s off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double pulsing green</td>
<td>Rest mode</td>
<td>Switching into blocking mode via controller</td>
</tr>
<tr>
<td>Green and red off</td>
<td>DC mode</td>
<td>Battery operation (Emergency mode)</td>
</tr>
</tbody>
</table>

① If the EM powerLED (operated in non-maintained mode) detects a fault at the LED module, the red LED indicator lights up and the output is stopped. After the correction of the fault disconnect the unswitched phase from the mains supply or carry out a function or duration test. This will detect the new LED module and reset the error display.

6.4 Testing

Functional test

Functional tests are carried out for 5 seconds on a weekly basis under the control of the Micro controller. Initiation and timing of these tests is set during the commissioning of the luminaire.

Duration test

A full duration test is carried out yearly to check the capacity of the batteries.

For a full description of commissioning and test features please refer to application notes.

Commissioning

After installation of the luminaire and initial connection of the mains supply and battery supply to the EM powerLED ST the unit will commence charging the batteries for 24 hours (initial charge). Afterwards the module will conduct a commissioning test for the full duration. The 24 hours recharge occurs also if a new battery is connected or the module exits the rest mode condition. The following automatic commissioning duration test is only performed when a battery is replaced and fully charged (after 24 hours). The easy commissioning feature will set the initial test day and time to ensure random testing of units.

Test switch

An optional test switch can be wired to each EM powerLED ST. This can be used to:
- initiate a 5 seconds function test press 200 ms < T < 1 s
- execute function test as long as switch pressed > 1 s press
- adjust local timing > 10 s press

Rest Mode / Inhibit Mode

Emergency operation is automatically started when the mains supply is switched off. If the Rest Mode is activated, the discharging of the battery will be minimized by switching off the LED output. If the Inhibit Mode has been activated before the mains supply is switched off, Rest Mode will be automatically activated if the mains supply is switched off within 15 minutes. Rest Mode and Inhibit Mode can be initiated by applying a short pulse between 9.5 and 22.5 VDC in amplitude for a period of 150 to 1,000 ms. This pulse shall be applied to terminals marked Rest. After a mains reset the EM powerLED ST exits the Rest Mode. Rest Mode and Inhibit Mode can both be disabled by applying a voltage pulse of 1,000 to 2,000 ms to the terminals marked as Rest to send the RE-LIGHT/RESET INHIBIT command.

In combination with a 1-cell battery the EM powerLED does not support Rest Mode / Inhibit Mode.
7. Battery data

7.1 Battery selection

<table>
<thead>
<tr>
<th>Technology and capacity</th>
<th>Design</th>
<th>Number of cells</th>
<th>Type</th>
<th>Article no.</th>
<th>Assignable batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO4, 15 Ah 18650 cells</td>
<td>stick</td>
<td>1 x 2</td>
<td>ACCU-LiFePO4 2A CON</td>
<td>28002318</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 4</td>
<td>ACCU-LiFePO4 6.0Ah 4A CON</td>
<td>28002322</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 6</td>
<td>ACCU-LiFePO4 9.0Ah 6A CON</td>
<td>28002328</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>2 + 2</td>
<td>ACCU-LiFePO4 6.0Ah 4C CON</td>
<td>28002324</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>3 + 3</td>
<td>ACCU-LiFePO4 9.0Ah 6C CON</td>
<td>28002330</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>2 x 1</td>
<td>ACCU-LiFePO4 2B CON</td>
<td>28002319</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>4 x 1</td>
<td>ACCU-LiFePO4 6.0Ah 4B CON</td>
<td>28002323</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>6 x 1</td>
<td>ACCU-LiFePO4 9.0Ah 6B CON</td>
<td>28002329</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 2</td>
<td>PACK-LiFePO4 3.0Ah 2 CON</td>
<td>28003805</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 4</td>
<td>PACK-LiFePO4 6.0Ah 4 CON</td>
<td>28003807</td>
<td>*</td>
</tr>
</tbody>
</table>

7.2 Battery charge / discharge data

<table>
<thead>
<tr>
<th>Type</th>
<th>EM pLED ST NM LiFePO4 4W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>89800801, 89800802</td>
</tr>
<tr>
<td>Duration</td>
<td>1 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery charge time</th>
<th>EM pLED ST NM LiFePO4 4W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial charge</td>
<td>24 h</td>
</tr>
<tr>
<td>Trickle charge</td>
<td>continuously</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charging current</th>
<th>EM pLED ST NM LiFePO4 4W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial charge</td>
<td>240 – 300 mA</td>
</tr>
<tr>
<td>Trickle charge</td>
<td>240 – 300 mA / 0 mA</td>
</tr>
</tbody>
</table>

Discharge current	1620 – 1980 mA
Discharge voltage range	2.0 – 3.6 V per cell
Discharge voltage range	2.3 – 3.6 V per cell

1 Automatic recharge when battery voltage falls below 3.4 V. Charger off (0 mA) when battery voltage exceeds 3.6 V. Note: Battery protected against operation at excessive temperatures (charging stopped when battery cell temperature < -5 °C or > 60 °C). The emergency lighting LED driver will recharge the battery normally after running the test of IEC 61347-2-7 CL 22.3 (abnormal operating conditions).

2 The battery will not be charged below 2.0 V.
7.3 ACCU-LiFePO4

Capacity 1.5 Ah

- International designation: IFpR 19/66
- Battery voltage/cell: 3.2 V
- Cell type: 18650

Case temperature range to ensure

- 4 years design life: +55 °C
- 6 years design life: +45 °C
- 8 years design life: +35 °C

Max. short term battery case temperature

- (shorter than 1 month over the battery lifetime): 70 °C

Max. number discharge cycles

- 50 cycles total

Max. storage time

- 12 months
- at +5 °C to +25 °C

7.4 ACCUpack-LiFePO4

Capacity 1.5 Ah

- International designation: IFpR 19/66
- Battery voltage/cell: 3.2 V
- Cell type: 18650

Case temperature range to ensure

- 4 years design life: +5 °C to +45 °C
- 6 years design life: +5 °C to +35 °C
- 8 years design life: +5 °C to +25 °C

Max. short term battery case temperature

- (shorter than 1 month over the battery lifetime): 70 °C

Max. number discharge cycles

- 50 cycles total

Max. storage time

- 12 months
- at +5 °C to +25 °C

Comply with UN 38.3 and IEC 62133 (safety testing) protected against overcharge, over discharge, charging at excessive temperatures, short-circuit and over current.

Only use Tridonic batteries.

7.5 Safety

7.5.1 Deep discharge protection

When the battery remains connected without charging for a long period of time after the battery cut off of the driver the battery voltage can still drop. To make sure the cells are not damaged by this voltage drop, the battery protection prevents the battery from further discharge below 2.0 V.

7.5.2 Overcharge protection

If in case of an error or the use of a wrong driver the battery gets overcharged the battery protection will disconnect the battery from the driver at a voltage of 3.9 V. A discharge of the battery is still possible after the protection circuit was triggered to guarantee emergency operation.

7.5.3 Short-circuit protection

In case of a short circuit the battery protection opens the connection to the driver and the output is therefore free of voltage. The output will be reactivated again when the short circuit is removed.

7.5.4 Temperature protection

The battery is protected against temporary thermal overheating. If the temperature limit is exceeded the further charging of the battery is no longer possible. The temperature protection is activated below approx. 0 °C and above approx. +60 °C. The discharging of the battery is still possible to guarantee emergency operation.

7.6 Wiring batteries

To inhibit inverter operation disconnect the batteries by removing the connection at battery side.

For further informations refer to corresponding battery datasheet.

7.7 Storage, installation and commissioning

Relevant information about storage conditions, installation and commissioning are provided in the battery datasheets.

8. Miscellaneous

8.1 Battery replacement

After a battery replacement and a subsequent full charge cycle (24 h) a duration test is mandatory to prove that with the new battery the rated duration is achieved.

8.2 Mains-connected transformers

The EM powerLED does not contain mains-connected windings of transformers.

8.3 FELV control terminals

FELV control terminals marked „Risk of electric shock“ are not safe to touch. Insulate circuits connected to any FELV control terminal for the Low Voltage supply voltage of the control gear. Protect terminals connected to the FELV circuit against accidental contact.

8.4 Additional information

Additional technical information at www.tridonic.com → Technical Data

Guarantee conditions at www.tridonic.com → Services

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.