Product description
• Emergency lighting LED driver with DALI interface and automatic test function
• For self-contained emergency lighting
• For LED modules with a forward voltage of 50 – 250 V
• Low profile casing (21 x 30 mm cross-section)
• For luminaire installation
• Nominal lifetime up to 100,000 h
• 5 years guarantee (conditions at www.tridonic.com)

Properties
• Non maintained operation
• DALI interface for controlled testing and monitoring
• 1, 2 or 3 h rated duration
• Operating time selectable with plug (duration link)
• Compatible with most constant current LED drivers (see 5.4)
• 3-pole technology: 2-pole LED module changeover and delayed power switching for the LED driver
• Automatic shutdown of output if LED load is out of range
• Constant power output
• Addressing function, patented („EZ easy addressing“)
• Two-colour status display LED
• Electronic charge system
• Deep discharge protection
• Short-circuit-proof battery connection
• Polarity reversal protection for battery provided by 3-pole connector
• Automatic detection of the connected battery technology (NiMH or LiFePO4 batteries)
Tests:
• Status of the battery
• Status of the LED
• Function test
• Duration test

Batteries
• High-temperature cells
• NiMH or LiFePO4 batteries
• LA or 18650 cells
• 4-year design life for NiMH batteries
• 1-year guarantee for NiMH batteries
• 4 – 8 years design life for LiFePO4 batteries
• 4 years guarantee for LiFePO4 batteries
• For battery compatibility refer to chapter „Battery selection“

Standards, page 6
Wiring diagrams and installation examples, page 7
Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage</td>
<td>220 – 240 V</td>
</tr>
<tr>
<td>AC voltage range</td>
<td>198 – 264 V</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50 / 60 Hz</td>
</tr>
<tr>
<td>LED module forward voltage range</td>
<td>50 – 250 V</td>
</tr>
<tr>
<td>Output current</td>
<td>see chapter 5.3</td>
</tr>
<tr>
<td>Starting time</td>
<td>< 0.5 s from detection of emergency event</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>320 V (for 48 h)</td>
</tr>
<tr>
<td>U-OUT (including open-/short-circuit and double load)</td>
<td>300 V</td>
</tr>
<tr>
<td>Max. open circuit voltage</td>
<td>300 V</td>
</tr>
<tr>
<td>Ambient temperature range ta</td>
<td>-25…+55 °C</td>
</tr>
<tr>
<td>Max. casing temperature tc</td>
<td>80 °C</td>
</tr>
<tr>
<td>Mains voltage changeover threshold</td>
<td>according to EN 60598-2-22</td>
</tr>
<tr>
<td>Mains surge capability (between L – N)</td>
<td>1 kV</td>
</tr>
<tr>
<td>Mains surge capability (between L/N – PE)</td>
<td>2 kV</td>
</tr>
<tr>
<td>Type of protection</td>
<td>IP20</td>
</tr>
<tr>
<td>Rest mode max. number of emergency units</td>
<td>100</td>
</tr>
<tr>
<td>Rest mode max. wiring distance</td>
<td>1000 m</td>
</tr>
<tr>
<td>Functional test</td>
<td>Weekly 5s test</td>
</tr>
<tr>
<td>Duration test</td>
<td>Yearly 1h / 2 h / 3 h test</td>
</tr>
<tr>
<td>Lifetime</td>
<td>up to 100,000 h</td>
</tr>
<tr>
<td>Guarantee (conditions at www.tridonic.com)</td>
<td>5 years</td>
</tr>
<tr>
<td>Dimensions LxWxH</td>
<td>179 x 30 x 21 mm</td>
</tr>
</tbody>
</table>

Specific technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>Battery technology<sup>a</sup></th>
<th>Rated duration</th>
<th>Typ. λ (at 230 V, 50 Hz)</th>
<th>Typ. output power P emergency</th>
<th>Mains current in charging operation</th>
<th>Rated power in charging operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial charge</td>
<td>Fast recharge</td>
</tr>
<tr>
<td>EM converterLED PRO 202A MH/LiFePO4 250V</td>
<td>NiMH</td>
<td>1 h</td>
<td>0.70C</td>
<td>2.3 W</td>
<td>16 mA</td>
<td>18 mA</td>
</tr>
<tr>
<td></td>
<td>LiFePO<sub>4</sub></td>
<td>2 h</td>
<td>0.70C</td>
<td>2.3 W</td>
<td>20 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 h</td>
<td>0.70C</td>
<td>2.3 W</td>
<td>20 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>EM converterLED PRO 203 MH/LiFePO4 250V</td>
<td>NiMH</td>
<td>1 h</td>
<td>0.70C</td>
<td>2.3 W</td>
<td>15 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td></td>
<td>LiFePO<sub>4</sub></td>
<td>2 h</td>
<td>0.65C</td>
<td>2.3 W</td>
<td>19 mA</td>
<td>19 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 h</td>
<td>0.65C</td>
<td>2.3 W</td>
<td>19 mA</td>
<td>19 mA</td>
</tr>
<tr>
<td>EM converterLED PRO 204 MH/LiFePO4 250V</td>
<td>NiMH</td>
<td>1 h</td>
<td>0.70C</td>
<td>2.5 W</td>
<td>16 mA</td>
<td>18 mA</td>
</tr>
<tr>
<td></td>
<td>LiFePO<sub>4</sub></td>
<td>2 h</td>
<td>0.70C</td>
<td>2.5 W</td>
<td>20 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 h</td>
<td>0.70C</td>
<td>2.5 W</td>
<td>20 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>EM converterLED PRO 205 MH/LiFePO4 250V</td>
<td>NiMH</td>
<td>1 h</td>
<td>0.70C</td>
<td>3.5 W</td>
<td>17 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td>LiFePO<sub>4</sub></td>
<td>2 h</td>
<td>0.70C</td>
<td>3.5 W</td>
<td>24 mA</td>
<td>24 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 h</td>
<td>0.70C</td>
<td>3.5 W</td>
<td>24 mA</td>
<td>24 mA</td>
</tr>
</tbody>
</table>

^a EM = Emergency

^b In case of NiMH batteries: Intermittent charge is used. Value 1 is for 4 min. charge on / Value 2 is for 16 min. charge off. In case of LiFePO₄ technology: Intermittent charge is used. Value 1 is for 4 min. charge on / Value 2 is for 16 min. charge off / Value 3 is for 15 min. charge on / Value 4 is for 40 min. charge off / Value 5 is for 12 min. charge on / Value 6 is for 24 min. charge off / Value 7 is for 5 min. charge on / Value 8 is for 10 min. charge off / Value 9 is for 10 min. charge on / Value 10 is for 20 min. charge off / Value 11 is for 3 min. charge on / Value 12 is for 6 min. charge off / Value 13 is for 1 min. charge on / Value 14 is for 2 min. charge off / Value 15 is for 0.5 min. charge on / Value 16 is for 1 min. charge off.

^c 12 h battery charging time for 2 h emergency lighting function when used with LiFePO₄ batteries.
Product description

- Optional strain-relief set for independent applications
- Transforms the LED driver into a fully class II compatible LED driver (e.g. ceiling installation)
- Easy and tool-free mounting to the LED driver, screwless cable-clamp channels with strain-relief (240 x 43 x 30 mm)

Permissible cable jacket diameter 2.2 – 9 mm

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, carton</th>
<th>Packaging, pallet</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMcLED SR</td>
<td>28003813</td>
<td>90 pc(s)</td>
<td>1,260 pc(s)</td>
<td>0.08 kg</td>
</tr>
</tbody>
</table>
Product description
- For connection to the emergency lighting unit
- For checking the device function
- Plug connection

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test switch EM 3</td>
<td>89899956</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.013 kg</td>
</tr>
</tbody>
</table>

Product description
- Two-colour status display LED
- Green: system OK, red: fault
- Plug connection

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED EM bi-colour, 1.0 m CON</td>
<td>89800273</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.015 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, high brightness HO 1.0 m CON</td>
<td>89800275</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.015 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, 0.6 m CON</td>
<td>89800474</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.005 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, high brightness HO 0.6 m CON</td>
<td>89800475</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.005 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, 0.3 m CON</td>
<td>89800274</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.005 kg</td>
</tr>
<tr>
<td>LED EM bi-colour, high brightness HO 0.3 m CON</td>
<td>89800276</td>
<td>25 pc(s)</td>
<td>200 pc(s)</td>
<td>0.005 kg</td>
</tr>
</tbody>
</table>
Product description
• Extension cable for LiFePO₄ batteries
• Cable length 500 mm
• 3-pole plug connection

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTENSION CABLE LiFePO₄ 500mm</td>
<td>28002461</td>
<td>10 pc(s)</td>
<td>200 pc(s)</td>
<td>0.01 kg</td>
</tr>
</tbody>
</table>

Product description
• Connection cable for NiMH batteries
• Cable length 500 mm
• 2-pole plug connection for batteries and 3-pole plug connection for LED driver

Ordering data

<table>
<thead>
<tr>
<th>Type</th>
<th>Article number</th>
<th>Packaging, bag</th>
<th>Packaging, carton</th>
<th>Weight per pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTION CABLE NiMH 500mm</td>
<td>28002462</td>
<td>10 pc(s)</td>
<td>200 pc(s)</td>
<td>0.015 kg</td>
</tr>
</tbody>
</table>
1. Standards

- EN 61347-1
- EN 61347-2-13
- EN 61347-2-7
- EN 55015
- EN 61000-3-2
- EN 61000-3-3
- EN 61547
- EN 60068-2-64
- EN 60068-2-29
- EN 60068-2-30
- EN 62384
- DALI standard EN 62386-202
- according to EN 50172
- according to EN 60598-2-22
- according to EN 62034

Meaning of marking ☰
Double or reinforced insulation for built-in electronic LED drivers. The control gear relies upon the luminaire enclosure for protection against accidental contact with live parts.

1.1 Glow-wire test

according to EN 61347-1 with increased temperature of 850 °C passed.

1.2 Insulation and electric strength testing of luminaires

Electronic LED-Drivers can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V DC for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal. The insulation resistance must be at least 2 MΩ.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1,500 V AC (or 1,414 x 1,500 V DC). To avoid damage to the electronic devices this test must not be conducted.

2. Thermal details and lifetime

2.1 Lifetime

Average lifetime 50,000 hours under rated conditions with a failure rate of less than 10 %. Average failure rate of 0.2 % per 1000 operating hours.

<table>
<thead>
<tr>
<th>Expected lifetime with LiFePO₄ batteries</th>
<th>tc (°C)</th>
<th>65 °C</th>
<th>70 °C</th>
<th>75 °C</th>
<th>80 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM converterLED PRO 202A MH/LiFePO₄ 250V</td>
<td>lifetime</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>80,000 h</td>
<td>56,000 h</td>
</tr>
<tr>
<td>EM converterLED PRO 203 MH/LiFePO₄ 250V</td>
<td>lifetime</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>80,000 h</td>
<td>56,000 h</td>
</tr>
<tr>
<td>EM converterLED PRO 204 MH/LiFePO₄ 250V</td>
<td>lifetime</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>76,000 h</td>
<td>56,000 h</td>
</tr>
<tr>
<td>EM converterLED PRO 205 MH/LiFePO₄ 250V</td>
<td>lifetime</td>
<td>> 100,000 h</td>
<td>> 100,000 h</td>
<td>78,000 h</td>
<td>55,000 h</td>
</tr>
</tbody>
</table>

The emergency lighting LED driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than 10 %.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / Wiring

3.1 Wiring diagrams

One or more LED modules with a total forward voltage of 50 to 250 V can be connected to the EM converterLED module. These LED module(s), marked with “Emergency” are operated in emergency mode from the associated battery. In normal mains mode all LED modules are operated by the mains LED driver.
EM converterLED PRO with one LED module for non-maintained emergency operation

EM converterLED PRO with a standard LED LED driver and one LED module for mains and emergency operation

EM converterLED PRO with a standard LED LED driver and series operation of LED modules

One LED module is operated in emergency mode. All LED modules are operated in mains mode.
EM converterLED PRO with a standard LED LED driver and parallel operation of LED modules

One LED module is operated in emergency mode. All LED modules are operated in mains mode.

Wireless set-up for EM converterLED PRO with a standard LED driver and one LED module for mains and emergency operation

* For further information see basicDIM Wireless datasheet at www.tridonic.com
Wireless set-up for EM converterLED PRO with a DALI LED driver and one LED module for mains and emergency operation.
3.2 Wiring type and cross section

Solid wire with a cross section of 0.5 – 1.5 mm². Strip 8 – 9 mm of insulation from the cables to ensure perfect operation of terminals.

Wiring: LED module/LED driver/supply

3.3 Battery connection

NiMH: Connection with extension

LiFePO₄: Direct connection

LiFePO₄: Connection with extension

3.4 Loose wiring

Loosen wire through twisting and pulling or using a Ø 1 mm release tool

3.5 Wiring guidelines

- The output to the LED is DC but has high frequency content, which should be considered for good EMC compliance.
- Separate LED leads from the mains and DALI connections and wiring for good EMC performance.
- Maximum lead length on the LED terminals is 3 m. For a good EMC performance keep the LED wiring as short as possible.
- Route the secondary wires (LED module) in parallel to ensure good EMC performance.
- Maximum lead length for the Test switch and Indicator LED connection is 1 m. Separate the test switch and indicator LED wiring from the LED leads to prevent noise coupling.
- Battery leads are specified with 0.5 mm cross section and a length of 0.8 m.
- DALI terminals are mains proof.
- Protect the wiring against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.) to avoid the damage of the control gear.

To ensure that a luminaire containing LED emergency units complies with EN 55015 for radio frequency conducted interference in both normal and emergency mode it is essential to follow good practice in the wiring layout.

Within the luminaire route the switched and unswitched 50 Hz supply wiring as short as possible and keep it as far away as possible from the LED leads. Through wiring may affect the EMC performance of the luminaire.

Do not exceed the max. length of LED leads to the LED module. Note that the length of the EM converterLED leads to the LED module is added to the length of the leads from the LED driver to the EM converterLED module when considering the max. permitted lead length of the LED driver.

3.6 Maximum lead length

LED 3 m (6 m loop)⁰
Status indication LED 1 m
Batteries 0.8 m

¹ Note: The length of LED leads to the LED module must not be exceeded. Note that the length of the EM converterLED leads is added to the length of the leads from the LED driver to the EM converterLED module when considering max. permitted lead length of the LED driver. Leads should always be kept as short as possible.

3.7 Use of different phases

The use of different phases for switched line and unswitched line is allowed. When using different phases, the unswitched line must fail if the switched line fails. This is required to assure correct switching into emergency mode. It can be realised with a relay.
4. Mechanical values

4.1 Housing properties

- Casing manufactured from polycarbonate.
- Type of protection: IP20
- Max. torque at the mounting screws: 0.8 Nm

4.2 Mechanical data accessories

LED status indicator
- Bi-colour
- Mounting hole 6.5 mm diameter, 1 – 1.6 mm thickness
- Lead length 0.3 m / 1.0 m
- Insulation rating: 90 °C
- Plug connection

Test switch
- Mounting hole 7.0 mm diameter
- Lead length 0.55 m
- Plug connection

Battery connection
- Plug connection 0.3 m
- Extension 0.5 m

5. Electrical values

5.1 Maximum loading of automatic circuit breakers

<table>
<thead>
<tr>
<th>Automatic circuit breaker type</th>
<th>BT10</th>
<th>BT13</th>
<th>BT16</th>
<th>BT20</th>
<th>CT10</th>
<th>CT13</th>
<th>CT16</th>
<th>CT20</th>
<th>Inrush current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Ø</td>
<td>1.5 mm</td>
<td>1.5 mm</td>
<td>1.5 mm</td>
<td>2.5 mm</td>
<td>2.5 mm</td>
<td>3.0 mm</td>
<td>3.0 mm</td>
<td>5.0 mm</td>
<td>L<sub>max</sub> time</td>
</tr>
<tr>
<td>EM converterLED PRO MH/LiFePO4 250V</td>
<td>90</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>180</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>10 A</td>
</tr>
</tbody>
</table>

5.2 Insulation matrix

<table>
<thead>
<tr>
<th></th>
<th>Mains</th>
<th>Switched Live</th>
<th>Battery: LED, Test switch, Indicator LED</th>
<th>DALI</th>
<th>LED driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Switched Live</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Battery: LED, Test switch, Indicator LED</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DALI</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>LED driver</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

• Represents basic insulation
• • Represents double or reinforced insulation

When using a non-SELV LED driver insulate the battery, LED, test switch and indicator LED in the luminaire according to the U-OUT rating of the LED driver.
DALI terminals are not SELV. Wire the terminals in accordance with the requirements of low voltage installations.
5.3 Typ. LED current/voltage characteristics

The LED current in emergency mode is automatically adjusted by the EM converterLED module based on the total forward voltage of the LED modules connected and the associated battery. The start of the LED in emergency mode does not result in a current peak.

EM converterLED PRO 202A MH/LiFePO4 250V
Article number: 89800903
NiMH battery, 3.6 V battery voltage
750 – 800 mA battery discharge current (tolerance)
LiFePO₄ battery, 3.2 V battery voltage
845 – 905 mA battery discharge current (tolerance)

EM converterLED PRO 203 MH/LiFePO4 250V
Article number: 89800637
NiMH battery, 3.6 V battery voltage
800 – 860 mA battery discharge current (tolerance)
LiFePO₄ battery, 3.2 V battery voltage
915 – 985 mA battery discharge current (tolerance)

EM converterLED PRO 204 MH/LiFePO4 250V
Article number: 89800638
NiMH battery, 4.8 V battery voltage
810 – 870 mA battery discharge current (tolerance)
LiFePO₄ battery, 3.2 V battery voltage
1,275 – 1,375 mA battery discharge current (tolerance)

EM converterLED PRO 205 MH/LiFePO4 250V
Article number: 89800639
NiMH battery, 6.0 V battery voltage
820 – 880 mA battery discharge current (tolerance)
LiFePO₄ battery, 3.2 V battery voltage
1,695 – 1,825 mA battery discharge current (tolerance)
5.4 LED driver compatibility

The EM converterLED emergency unit use 3 pole technology and is compatible with most LED drivers on the market, however it is important to check that the rating of the LED driver does not exceed the values specified below:

- The max. allowed output current rating of the associated LED driver is 2 A eff (current rating of the terminals of EM converterLED) and 2.4 A peak (current rating of switching relays of EM converterLED).
- The max. allowed inrush current rating of the associated LED driver is 60 A peak for 1 ms or 84 A for 255 μs (inrush current rating of switching relay of EM converterLED).
- The max. allowed output voltage (U-OUT) of the associated LED driver applied to the EM converterLED output is 450 V (voltage withstand between adjacent contact of the single switching relay of the EM converterLED).
- The max. allowed LED load of the associated LED driver is 150 W in operation. The load must be an LED module.

Check compatibility with the carried out function test (duration at least 5 seconds) individually for each device.

6. Functions

6.1 Duration link selection

<table>
<thead>
<tr>
<th>Duration</th>
<th>Link position</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hr</td>
<td>Position A</td>
</tr>
<tr>
<td>2 hr</td>
<td>No duration link</td>
</tr>
<tr>
<td>1 hr</td>
<td>Position B</td>
</tr>
</tbody>
</table>

Emergency lighting LED driver supplied with duration link in 3 hours position (position A).

The position of the link will only be read on first power up. If it is changed afterwards both the battery and mains supply must be disconnected for 10 seconds to enable the EM converterLED to read the new link position on reconnection of the battery and mains. It will lead to a false battery failure indication if the link is changed after installation without this reset.

6.2 Status indication

System status is indicated by a bi-colour LED and by a DALI status flag.

<table>
<thead>
<tr>
<th>LED indication</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent green</td>
<td>System OK</td>
<td>AC mode</td>
</tr>
<tr>
<td>Fast flashing green (0,1 sec on – 0,1 sec off)</td>
<td>Function test</td>
<td></td>
</tr>
<tr>
<td>Slow flashing green (1 sec on – 1 sec off)</td>
<td>Duration test</td>
<td></td>
</tr>
<tr>
<td>Red LED on</td>
<td>Load failure</td>
<td>Open circuit / Short circuit / LED failure</td>
</tr>
<tr>
<td>Slow flashing red (1 sec on – 1 sec off)</td>
<td>Battery failure</td>
<td>Battery failed the duration test or function test / Battery is defect or deep discharged / Incorrect battery voltage</td>
</tr>
<tr>
<td>Fast flashing red (0,1 sec on – 0,1 sec off)</td>
<td>Charging failure</td>
<td>Incorrect charging current</td>
</tr>
<tr>
<td>Double pulsing green</td>
<td>Inhibit mode</td>
<td>Switching into inhibit mode via controller</td>
</tr>
<tr>
<td>Binary transmission of address via green/red LED</td>
<td>Address identification</td>
<td>During address identification mode</td>
</tr>
<tr>
<td>Green and red off</td>
<td>DC mode</td>
<td>Battery operation (emergency mode)</td>
</tr>
</tbody>
</table>

6.3 Testing

DALI Control

A DALI command from a suitable control unit can be used to initiate function and duration tests at individually selected times. Status flags are set for report back and data logging of results.

When a DALI bus has not been connected or when a DALI bus is connected but the DALI default DELAY and INTERVAL times have not been re-set by sending appropriate DALI commands, then the EM converterLED PRO will conduct self-tests in accordance with the default times set within the EEPROM.

These default times are factory pre-set, in accordance with the DALI standard EN 62386-202, to conduct an automatic function test every 7 days and a duration test every 52 weeks. Since the DELAY time is factory pre-set to Zero, all units are tested at the same time. Test times can be changed with a command over the DALI bus.

The DELAY and INTERVAL time values must be re-set when the emergency system test times are to be scheduled by a DALI control and monitoring system.

Note that once the default values have been set to Zero, tests will only be conducted following a command from the control system. If the DALI bus is disconnected the EM converterLED PRO does not revert to self-testing mode.

Addressing

The EM converterLED PRO includes the EZ easy addressing system which allows addressing and identification by using the bi-colour LED. Binary address codes given by the LED can be simply converted to the DALI addresses 0 to 63. For single handed addressing using this method it is necessary to send a broadcast ident command every 3 to 9 seconds. During this command the LEDs will be switched off and the indication LED will flash the 6 bit binary address preceded by a 3 second start indication period.
Commissioning
After installation of the luminaire and initial connection of the mains and battery supply to the EM converterLED PRO the device starts with the 20 hours initial charge followed by a 4 hours trickle charge for NiCd/NiMH batteries or with a 24 hours initial charge for LiFePO4 batteries. Afterwards the device conducts a commissioning test for the full duration. The 20 hours recharge for NiCd/NiMH batteries or 24 hours recharge for LiFePO4 batteries occurs also with the connection of a new battery. The following automatic commissioning duration test only takes place when a battery is replaced and fully charged and the interval time is not set to zero. In case the interval time is set to zero the device expects the DALI system to request the testing.

Functional test
The time of day and frequency of the 5 seconds function test can be set by the DALI controller. The default setting is a 5 seconds test on a weekly basis.

Duration test
The time of day and frequency of the duration test can be set by the DALI controller. The default setting is a duration test conducted every 52 weeks.

For 2 h operation:
The first commissioning duration test has a time of 120 minutes, subsequent through life tests are conducted for 90 minutes. When the battery is changed or disconnected and re-connected the unit will next conduct a 120 minute test.

Prolong time
Prolong time can be set by the DALI controller. This is the delay time between return of the mains supply and the end of the emergency operation. The default prolong time is set as 0 minutes as specified within the DALI standard. Indicator LED will stay off for the duration of the prolong time.

Rest Mode / Inhibit Mode
Emergency operation is automatically started when the mains supply is switched off. If the Rest Mode is activated, the discharging of the battery will be minimized by switching off the LED output. If the Inhibit Mode has been activated before the mains supply is switched off, Rest Mode will be automatically switched on if the mains supply is switched off within 15 minutes. Rest Mode and Inhibit Mode can be initiated by the DALI controller. The REST command has to be sent after the mains supply has been disconnected and whilst the EM converterLED PRO is in emergency operation. The INHIBIT command has to be sent while the EM converterLED PRO is supplied by mains. After a mains reset the EM converterLED PRO exits the Rest Mode. Rest Mode and Inhibit Mode can both be disabled by sending the RE-LIGHT/RESET INHIBIT command.

Test switch
An optional test switch can be wired to each EM converterLED. This can be used to:

• Initiate a 5 seconds function test: press 200 ms < T < 1 s
• Execute function test as long as switch pressed: press > 1 s
• Reset selftest timer (adjust local timing): press > 10 s

Timer reset functionality
The timer for function and duration test can be set to a particular time of the day by either pressing the test switch for longer than 10 seconds or cycling the unswitched line supply 5 times within 1 minute. The timer adjustment will enable the test start time to be defined manually at time in day when the timer was reset. It will also disable the adaptive test algorithm thereby forcing the unit to perform the test at the same time rather than it being defined by the adaptive algorithm. This function will only work provided the interval time is greater than zero (automatic test mode enabled). The delay timer value set when the unit was commissioned will be reloaded in order to randomise the tests between adjacent units.

BlackBox data recording
Parameters providing information about the application and use are stored in the EM converterLED PRO. The parameters stored provide information on the mains, battery, LED output and emergency operation. The BlackBox can be read out with the masterCONFIGURATOR and deviceANALYSER.

DALI Controller
DALI controllers and hardware/software solutions are available from Tridonic. Please refer to the Lighting controls section.

7. Battery data

7.1 Battery selection

<table>
<thead>
<tr>
<th>Technology and capacity</th>
<th>Design</th>
<th>Article no.</th>
<th>Assignable batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM converterLED PRO, 1 / 2 / 3 h</td>
<td>Type</td>
<td>EM converterLED PRO 202A MH/LiFePO4 250V</td>
<td>EM converterLED PRO 203 MH/LiFePO4 250V</td>
</tr>
<tr>
<td>NiMH 4.0Ah</td>
<td>stick</td>
<td>1 x 3</td>
<td>Accu-NiMH 3A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 4</td>
<td>Accu-NiMH 4A CON</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>2 x 2</td>
<td>Accu-NiMH 4C CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 3</td>
<td>Pack-NiMH 4Ah 3 CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 4</td>
<td>Pack-NiMH 4Ah 4 CON</td>
</tr>
<tr>
<td>LiFePO4, 15 Ah</td>
<td>stick</td>
<td>1 x 1</td>
<td>Accu-LiFePO4 1A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 2</td>
<td>Accu-LiFePO4 2A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 3</td>
<td>Accu-LiFePO4 3A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 4</td>
<td>Accu-LiFePO4 4A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 5</td>
<td>Accu-LiFePO4 5A CON</td>
</tr>
<tr>
<td></td>
<td>stick</td>
<td>1 x 6</td>
<td>Accu-LiFePO4 6A CON</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>2 x 2</td>
<td>Accu-LiFePO4 4C CON</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>2 x 3</td>
<td>Accu-LiFePO4 5C CON</td>
</tr>
<tr>
<td></td>
<td>stick + stick</td>
<td>3 x 3</td>
<td>Accu-LiFePO4 6C CON</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>2 x 1</td>
<td>Accu-LiFePO4 2B CON</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>3 x 1</td>
<td>Accu-LiFePO4 3B CON</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>4 x 1</td>
<td>Accu-LiFePO4 4B CON</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>5 x 1</td>
<td>Accu-LiFePO4 5B CON</td>
</tr>
<tr>
<td></td>
<td>side by side</td>
<td>6 x 1</td>
<td>Accu-LiFePO4 6B CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 1</td>
<td>PACK-LiFePO4 1.5Ah 1 CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 2</td>
<td>PACK-LiFePO4 3.0Ah 2 CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 3</td>
<td>PACK-LiFePO4 4.5Ah 3 CON</td>
</tr>
<tr>
<td></td>
<td>remote box</td>
<td>1 x 4</td>
<td>PACK-LiFePO4 6.0Ah 4 CON</td>
</tr>
</tbody>
</table>
7.2 Battery charge / discharge data

EM converterLED PRO, 1 / 2 / 3 h, NiMH

<table>
<thead>
<tr>
<th>Type</th>
<th>Duration</th>
<th>Battery charge time</th>
<th>Charging current</th>
<th>Discharge current</th>
<th>Charge voltage range</th>
<th>Discharge voltage range</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td>1 h</td>
<td>Initial charge</td>
<td>110 – 150 mA</td>
<td>280 – 320 mA</td>
<td>1.65 – 3.65 V</td>
</tr>
<tr>
<td>202A MH/LiFePO4 250V</td>
<td>2/3 h</td>
<td>Fast recharge</td>
<td>190 – 230 mA</td>
<td>180 – 220 mA / 0 mA / 16 min</td>
<td>750 – 800 mA</td>
<td>2.0 – 3.65 V</td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td>Trickle charge</td>
<td>110 – 150 mA / 4 min</td>
<td>800 – 860 mA</td>
<td>1.65 – 3.65 V</td>
<td>2.0 – 3.65 V</td>
</tr>
<tr>
<td>203 MH/LiFePO4 250V</td>
<td>1 h</td>
<td></td>
<td>310 – 350 mA</td>
<td>800 – 860 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td></td>
<td>110 – 150 mA / 4 min</td>
<td>800 – 860 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204 MH/LiFePO4 250V</td>
<td>2/3 h</td>
<td></td>
<td>190 – 230 mA</td>
<td>800 – 860 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td></td>
<td>110 – 150 mA / 4 min</td>
<td>800 – 860 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 MH/LiFePO4 250V</td>
<td>1 h</td>
<td></td>
<td>310 – 350 mA</td>
<td>800 – 860 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- The battery will be charged below 0.9 V. The EM converterLED will indicate a battery fault.
- The emergency lighting LED driver will recharge the battery normally after running the test of 61347-2-7 CL 22.3 (abnormal operating conditions).

EM converterLED PRO, 1 / 2 / 3 h, LiFePO4

<table>
<thead>
<tr>
<th>Type</th>
<th>Duration</th>
<th>Battery charge time</th>
<th>Charging current</th>
<th>Discharge current</th>
<th>Charge voltage range</th>
<th>Discharge voltage range</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td>Initial charge</td>
<td>115 – 155 mA</td>
<td>250 – 290 mA</td>
<td>2.0 – 3.65 V</td>
<td>2.0 – 3.65 V</td>
</tr>
<tr>
<td>202A MH/LiFePO4 250V</td>
<td>2/3 h</td>
<td>Fast recharge</td>
<td>250 – 290 mA</td>
<td>250 – 290 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td>Trickle charge</td>
<td>250 – 290 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 MH/LiFePO4 250V</td>
<td>1 h</td>
<td></td>
<td>430 – 470 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td></td>
<td>115 – 155 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204 MH/LiFePO4 250V</td>
<td>2/3 h</td>
<td></td>
<td>430 – 470 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM converterLED PRO</td>
<td></td>
<td></td>
<td>115 – 155 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 MH/LiFePO4 250V</td>
<td>1 h</td>
<td></td>
<td>430 – 470 mA / 0 mA</td>
<td>915 – 985 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Automatic recharge when battery voltage falls below 3.4 V. Charger off (0 mA) when battery voltage exceeds 3.6 V.
- Battery protected against operation at excessive temperatures (charging stopped when battery cell temperature < -5 °C or > 60 °C).
- The emergency lighting LED driver will recharge the battery normally after running the test of 61347-2-7 CL 22.3 (abnormal operating conditions).
- The battery will not be charged below 2.0 V.
7.3 Accu-NiMH

Capacity 4.0 Ah
International designation HRMU 19/90
Battery voltage/cell 12 V
Cell type LA
Case temperature range to ensure +5 °C to +50 °C
Max. number of switching cycles 4 cycles per year plus 30 cycles during commissioning
Max. storage time 12 months at +5 °C to +25 °C

7.4 Accu-LiFePO4

Capacity 1.5 Ah
International designation IFpR 19/66
Battery voltage/cell 3.2 V
Cell type 18650
Case temperature range to ensure +55 °C
6 years design life +45 °C
8 years design life +35 °C
Max. short term battery case temperature (shorter than 1 month over the battery lifetime) 70 °C
Max. number discharge cycles 50 cycles total
Max. storage time 12 months

7.5 Accupack-NiMH

Capacity 4.0 Ah
Battery voltage/cell 1.2 V
Cell type LAL
Ambient temperature range to ensure +5 °C to +35 °C
Max. short term battery case temperature (shorter than 1 month over the battery lifetime) 70 °C
Max. number discharge cycles 4 cycles per year plus 4 cycles during commissioning
Max. storage time 12 months

7.6 Accupack-LiFePO4

Capacity 1.5 Ah
International designation IFpR 19/66
Battery voltage/cell 3.2 V
Cell type 18650
Case temperature range to ensure +5 °C to +45 °C
6 years design life +5 °C to +35 °C
8 years design life +5 °C to +25 °C
Max. short term battery case temperature (shorter than 1 month over the battery lifetime) 70 °C
Max. number discharge cycles 50 cycles total
Max. storage time 12 months

7.7 Safety

7.7.1 Deep discharge protection
When the battery remains connected without charging for a long period of time after the battery cut off of the driver the battery voltage can still drop. To make sure the cells are not damaged by this voltage drop, the battery protection prevents the battery from further discharge below 2.0 V.

7.7.2 Overcharge protection
If in case of an error or the use of a wrong driver the battery gets overcharged the battery protection will disconnect the battery from the driver at a voltage of 39 V. A discharge of the battery is still possible after the protection circuit was triggered to guarantee emergency operation.

7.7.3 Short-circuit protection
In case of a short circuit the battery protection opens the connection to the driver and the output is therefore free of voltage. The output will be reactivated again when the short circuit is removed.

7.7.4 Overtemperature protection
The battery is protected against temporary thermal overheating. If the temperature limit is exceeded the further charging of the battery is no longer possible. The temperature protection is activated below approx. 0 °C and above approx. +60 °C. The discharging of the battery is still possible to guarantee emergency operation.

8. Storage, installation and commissioning

Relevant information about storage conditions, installation and commissioning are provided in the battery datasheets.

Activating NiMH batteries:
In order to activate new batteries, 2-3 full charge-discharge cycles could be needed. This activating process is defined by charging (24 h) and discharging (1/2/3 h) of the batteries. If the first duration test fails, please repeat the test after a 24 hour charging period.

8.1 Maximum number of switching cycles
EM converterLEDs are tested with 50,000 mains switching cycles of the associated LED driver.

8.2 Battery replacement
After a battery replacement and a subsequent full charge cycle (24 h) a duration test is mandatory to prove that with the new battery the rated duration is achieved.

8.3 BlackBox data recording
Several parameters in respect to the application and use of the product are stored in the EM converterLED. The parameters provide information about the mains, battery, LED output and emergency operation. The BlackBox can be read out with the masterCONFIGURATOR and deviceANALYSER.

In order to allow a safe detection of a battery replacement through the "Black Box data recording" follow the below described process.

Comply with UN 38.3 and IEC 62133 (safety testing) protected against over charge, over discharge, charging at excessive temperatures, short-circuit and over current.
Battery replacement
1. Disconnect mains
2. Disconnect battery
3. Reconnect and disconnect mains while no battery is not connected
4. Connect new battery
5. Connect mains

Battery fault is safely recorded by the EM converterLED
Connection of new battery is recorded by the EM converterLED

8.4 Mains-connected transformers

The EM converterLED does not contain mains-connected windings of transformers.

8.5 Additional information

Additional technical information at www.tridonic.com → Technical Data

Lifetime declarations are informative and represent no warranty claim.
No warranty if device was opened.